- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brannock, Pamela M. (1)
-
Devine, Jennifer A. (1)
-
Havird, Justin C. (1)
-
Maclaine, Kendra D. (1)
-
Magliocca, Nicholas R. (1)
-
McSweeney, Kendra (1)
-
Nielsen, Erik A. (1)
-
Pearson, Zoe (1)
-
Pearson, Zoe G. (1)
-
Sakihara, Troy S. (1)
-
Santos, Scott R. (1)
-
Sesnie, Steven E. (1)
-
Sterling, James J. (1)
-
Tellman, Elizabeth (1)
-
Wrathall, David J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected ∼2 years after their formation and at later time points spanning ∼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest that idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.more » « less
-
Magliocca, Nicholas R.; McSweeney, Kendra; Sesnie, Steven E.; Tellman, Elizabeth; Devine, Jennifer A.; Nielsen, Erik A.; Pearson, Zoe; Wrathall, David J. (, Proceedings of the National Academy of Sciences)Counterdrug interdiction efforts designed to seize or disrupt cocaine shipments between South American source zones and US markets remain a core US “supply side” drug policy and national security strategy. However, despite a long history of US-led interdiction efforts in the Western Hemisphere, cocaine movements to the United States through Central America, or “narco-trafficking,” continue to rise. Here, we developed a spatially explicit agent-based model (ABM), called “NarcoLogic,” of narco-trafficker operational decision making in response to interdiction forces to investigate the root causes of interdiction ineffectiveness across space and time. The central premise tested was that spatial proliferation and resiliency of narco-trafficking are not a consequence of ineffective interdiction, but rather part and natural consequence of interdiction itself. Model development relied on multiple theoretical perspectives, empirical studies, media reports, and the authors’ own years of field research in the region. Parameterization and validation used the best available, authoritative data source for illicit cocaine flows. Despite inherently biased, unreliable, and/or incomplete data of a clandestine phenomenon, the model compellingly reproduced the “cat-and-mouse” dynamic between narco-traffickers and interdiction forces others have qualitatively described. The model produced qualitatively accurate and quantitatively realistic spatial and temporal patterns of cocaine trafficking in response to interdiction events. The NarcoLogic model offers a much-needed, evidence-based tool for the robust assessment of different drug policy scenarios, and their likely impact on trafficker behavior and the many collateral damages associated with the militarized war on drugs.more » « less
An official website of the United States government
